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Abstract

A novel boundary-layer solution is obtained by the method of matched asymptotic expansions for the solute distribution at a solid-
ification front represented by a disk of finite radius R0 immersed in an axisymmetric converging stagnation point flow. The detailed anal-
ysis reveals a complex internal structure of the boundary layer consisting of eight subregions. The development of the boundary layer
starts from the rim region where the concentration, according to the obtained similarity solution, varies with the radius r along the solid-
ification front as �ln1/3(R0/r). At intermediate radii, where the corresponding concentration is found to vary as �ln(R0/r), the boundary
layer has an inner diffusion sublayer adjacent to the solidification front, an inner core region, and an outer diffusion sublayer which sep-
arates the former from the outer uniformly mixed region. The inner core, where the solute transport is dominated by convection, is char-
acterized by a logarithmically decreasing axial concentration distribution. The logarithmic increase of concentration along the radius is
limited by the radial diffusion becoming effective in the vicinity of the symmetry axis at distances comparable to the characteristic thick-
ness of the solute boundary layer.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Solidification from the melt is usually accompanied by
segregation of the dissolved substance which may be a
component of an alloy or a dopant of a semi-conductor
crystal. Despite the homogeneity of the original solution,
the solidified material may have a non-uniform solute dis-
tribution. This non-uniformity stems from the difference of
the equilibrium concentrations of the solute in the liquid
and solid phases. Thus, if the equilibrium concentration
of solute is lower in the solid than in the liquid phase, only
a fraction of solute is incorporated from the solution into
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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the solidifying material while the remaining part is repelled
by the solidification front as it advances into the liquid
phase [1]. This effect causes axial solute segregation that
is usually concentrated in a thin, diffusion-controlled
boundary layer adjacent to the solidification front. Axial
segregation can strongly be affected by the melt convection.
According to the classical work by Burton, Prim and Slich-
ter (BPS) [2], a sufficiently strong convection towards the
crystallization front reduces the thickness of the segrega-
tion boundary layer and so the solute concentration getting
into the crystal. Such a concept of an effective solute
boundary layer has been generally accepted to interpret
the effect of melt flow on the solute distribution in various
crystal growth applications [3–5].

The BPS approach, originally devised for a rotating-
disk flow modeling an idealized Czochralski growth
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Nomenclature

C solute concentration
C0 uniform concentration of well-mixed solution
C1 scaled dimensionless variation of concentration
Cc

1 inner core solutioneCc
1 correction at the symmetry axis

Co
1 outer core solution at symmetry axis

D diffusion coefficient
d0 characteristic thickness of the solute boundary

layer
F similarity solutions at the rim and intermediate

radii
Gc, Go inner and outer core similarity solutions at the

symmetry axis
Pe0 Péclet number based on the solidification veloc-

ity
Sc Schmidt number
k equilibrium partition coefficient
R0 dimensional radius of the disk
R dimensionless radius of the disk
r, z cylindrical coordinates
v melt velocity
v0 solidification velocity
vs velocity scale

Greek symbols

a, b exponents of similarity solution
d matching constant
�, e small parameters
g, ~g logarithmic axial coordinate
m kinematic viscosity
/ dimensionless axial solute flux
s logarithmic radial coordinate
n similarity variable
f, ~f intermediate axial coordinates

Subscripts

j order of expansion
r radial component
z axial component

Superscripts

c inner core
i inner diffusion layer
m intermediate layer
o outer core and diffusion layer
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configuration, supposes the melt to be driven towards the
solidification front by a radially diverging flow. However,
in many cases the melt is driven away from the solidifica-
tion front in its central part by a radially converging flow.
Examples are the flow rotating over a disk at rest [6], like in
a flow driven by a rotating [7] or a traveling [8] magnetic
field, as well as in the natural convection above a concave
solidification front in the vertical Bridgman growth process
[9]. Recently, we showed that the BPS approach is not
applicable to converging flows directed away from the
solidification front because the integral defining the effec-
tive boundary layer thickness, which is the basic concept
of the BPS theory, becomes unbounded for such flows
[10]. Our main conclusion was that a sufficiently strong
melt flow away from the solidification front is not compat-
ible with a radially uniform solute distribution. We consid-
ered a solidification front as a disk of finite radius
embedded in a melt with a strong converging flow and
found analytically a logarithmic solute segregation along
the solidification front. The solution, which was obtained
by a Laplace transform, was limited to the solidification
front excluding the symmetry axis. Thus, we predicted
the formation of a logarithmic concentration peak at the
symmetry axis but could not calculate its amplitude.

In the present work, we extend our previous study and
obtain a novel boundary-layer solution for the solute distri-
bution directly at and ahead of the solidification front pre-
sented by a disk of finite size in a strong converging
stagnation-point flow as in [10]. The solution, obtained
by the method of matched asymptotic expansions [11],
reveals a boundary layer with a complex structure consist-
ing of seven sublayers and a corner region at the symmetry
axis. For most of the subregions, the particular asymptotic
solutions are obtained analytically except the outer diffu-
sion layer, which separates the inner and outer core
regions, and the corner region at the symmetry axis, where
the corresponding asymptotic solutions can be found only
numerically. Each particular asymptotic solution is vali-
dated by comparing with the numerical solution of the
original problem.

The paper is organized as follows. In Section 2, the
problem for a disk of finite radius in a strong converging
axisymmetric neutral point flow is formulated. A similarity
solution at the rim, and matched asymptotic expansions
at intermediate radii and at the symmetry axis are obtained
in Sections 3–5, respectively. The obtained solution is
discussed in Section 6 and conclusions are presented in
Section 7.

2. Formulation of the problem

Consider a solidification front as a disk of finite radius
R0 advancing upwards with velocity v0 into an unbounded
volume of melt which is a dilute solution characterized by
the solute concentration C, as shown in Fig. 1. Sufficiently
far away from the solidification front, the melt is assumed
to be well-mixed with uniform concentration C0. At the
solidification front, supposed to be at the thermodynamic



Fig. 1. Sketch of the solidification front presented by a disk of radius R0

in a converging stagnation point flow with radial and axial velocity
components vr and vz including the boundary conditions for the
concentration C and the dimensionless deviation C1 from the uniform
concentration C0 of a well-mixed melt core.
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equilibrium, the ratio of solute concentrations in the solid
and liquid phases is given by the equilibrium partition coef-
ficient k. In the melt, solute is transported by both diffusion
with a coefficient D and convection with a velocity field~v.
For simplicity, the latter is assumed here to be similar to
the velocity distribution in a liquid rotating above a fixed
flat wall [6]. Thus, the axial velocity is assumed to depend
only on the vertical distance from the solidification front,
similarly to the rotating disk flow in the classical BPS for-
mulation [2], but the direction of the flow is opposite in our
case. In addition, we consider as usual the solute boundary
layer to be much thinner than that of momentum which
corresponds to large Schmidt numbers Sc = m/D, where m
is the kinematic viscosity of the melt. Then, the radial
and axial velocity components satisfying incompressibility,
impermeability and no-slip constraints can be approxi-
mated by the first terms of the corresponding power series
expansions in z

vr � �
1

2
v00z ð0Þrz; vz �

1

2
v00z ð0Þz2: ð1Þ

These expressions represent, on one hand, the simplest
description of a boundary layer flow as sketched in
Fig. 1. Since, on the other hand, the solute boundary layer
investigated here is due to Sc� 1 much smaller than the
velocity boundary layer, Eq. (1) represents to a leading
order also the general velocity structure of the considered
converging flow. Hence, the use of the simple expressions
(1) is expected to illustrate the effect of radial segregation
in more general converging flows.

Henceforth, we use the thickness of the solute boundary
layer based on the axial melt velocity as length scale

d0 ¼ ð2D=v00z ð0ÞÞ
1=3 ð2Þ

and C0 as the characteristic concentration scale to non-
dimensionalize all variables by keeping the original nota-
tion. In addition, we assume the stirring of the melt to be
so strong that the advancement of the solidification front
with the growth velocity v0 is small compared the charac-
teristic melt velocity in the solute boundary layer. The last
assumption implies that the local Péclet number based on
the growth rate is small: Pe0 = v0d0/D� 1. Then the
problem is defined by a single dimensionless parameter,
the dimensionless radius R ¼ R0=d0 ¼ R0ð2D=v00z ð0ÞÞ

�1=3,
which may be regarded as Péclet number based on the
external length scale R0 and the internal velocity scale
vs ¼ v00z ð0Þd2

0=2. The governing dimensionless equation is

z z
oC
oz
� r

oC
or

� �
¼ 1

r
o

or
r
oC
or

� �
þ o2C

oz2
; ð3Þ

where the radial diffusion term will be neglected as usual
for the boundary layer solution along the solidification
front obtained in the following.

By taking into account that sufficiently far away from
the solidification front the concentration tends to a con-
stant value of the well-mixed melt that in dimensionless
form reads as Cjz?1 = 1, the boundary condition at the
solidification front

Pe0ð1� kÞC þ oC
oz

����
z¼0

¼ 0

with Pe0� 1 suggests to search for the concentration as

C � 1þ Pe0ð1� kÞC1; ð4Þ
where C1 is the dimensionless deviation of the concentra-
tion with a characteristic magnitude Pe0(1 � k)� 1 from
its uniform core value. Consequently, the boundary condi-
tions for C1 take the form

oC1

oz

����
z¼0

¼ �1 ð5Þ

and C1jz?1 = 0, while C is replaced by C1 in Eq. (3) which,
in comparison to the original BPS equation, has an extra
term related to the radial advection whereas the term of
axial advection due to the solidification speed is neglected
[2]. Searching for similarity solutions along the solidifica-
tion front in the form C1(r,z) = raF(zrb) leads to radially
uniform solutions only with a = b = 0 which were shown
in our previous study [10] to become unbounded for this
type of converging flow. However, similarity solutions
can be obtained for this problem after elimination of r from
Eq. (3) that is accomplished by the substitution s = �ln(r)
leading to

z z
oC
oz
þ oC

os

� �
¼ o2C

oz2
: ð6Þ

Since this equation does not explicitly contain s, C(s,z)
being a solution implies that C(s � s0,z) is also a solution.
Consequently, we can replace s by s � s0, where s0 =
�ln(R) and thus s = ln(R/r). Note that s = 0 corresponds
to the rim of the disk while s ?1 to the symmetry axis.
Now, a similarity solution can be sought as



 1.2

 1.4

 1.6
F0
F1

J. Priede, G. Gerbeth / International Journal of Heat and Mass Transfer 50 (2007) 216–225 219
Cðs; zÞ ¼ saF ðnÞ; ð7Þ
where n = zsb, that substituted into Eq. (6) results in

nðsnF 0 þ aF þ bnF 0Þ ¼ s1þ3bF 00: ð8Þ
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Fig. 2. First two terms of the similarity solution defined by (10) and (13)
versus the similarity variable n = z/s1/3.
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Fig. 3. Comparison of different approximations for the concentration
distribution along the solidification front versus s = ln(R/r): one and two
terms of the similarity solution at the rim (11), exact solution obtained in
[10], and intermediate asymptotic solution (15).
3. Similarity solution at the rim

Neglecting the term proportional to s that is expected to
be small at the rim we find b ¼ � 1

3
while Eq. (8) takes the

form

F 000 þ
n
3
ðnF 00 � F 0Þ ¼ 0;

but the boundary condition (5) yields a ¼ �b ¼ 1
3

and

F 00ð0Þ ¼ �1: ð9Þ
The solution of the above equation satisfying the boundary
condition at infinity is

F 0ðnÞ ¼ c0 exp � n3

9

� �
U 1;

2

3
;
n3

9

� �
; ð10Þ

where U(a,b,x) is the confluent hypergeometric function
[12]. From boundary condition (9) we find c0 = 3�1/3/
C(2/3). Consequently, the radial solute segregation along
the solidification front at the rim is given by C1(r, 0) =
ln1/3(R/r)F0(0), where F0(0) = 32/3/C(2/3) � 1.5361. Note
that the obtained solution is valid only for s� 1 because
the neglected term becomes significant at s � 1. This ne-
glected term can be taken into account by searching for
solutions in the more general form

C1ðs; zÞ ¼ saF ðn; sÞ ¼ sa
X
j¼0

sjF jðnÞ: ð11Þ

Substitution of this solution into Eq. (6) leads to the recur-
sive system of equations:

F 00j þ
n
3
ðnF 0j � ð1þ 3jÞF jÞ ¼ n2F 0j�1;

F 0jð0Þ ¼
�1; j ¼ 0

0; j > 0

�
: ð12Þ

The solution for j = 0 is already found above. For j = 1 the
solution is

F 1ðnÞ ¼ c1 exp � n3

9

� �
U 2;

2

3
;
n3

9

� �
þ 1þ n3

6

� �
F 0ðnÞ:

ð13Þ

From the boundary condition in (12) we find c1 = �c0 and,
thus, the first correction to the radial solute segregation at
the rim to be F 1ð0Þ ¼ 1

4
F 0ð0Þ. Although no further analytic

solutions for j > 1 can be found in this way, the exact
expressions for all coefficients Fj(0), which define the con-
centration distribution along the solidification front, can
be derived analytically [10] by applying a Laplace trans-
form directly to Eq. (6) with neglected radial diffusion
term. The similarity solutions (10) and (13) are plotted in
Fig. 2 while the corresponding concentration distributions
along the solidification front are shown in Fig. 3 together
with the intermediate asymptotic solution obtained in the
following section and the exact power-series solution ob-
tained in [10].

4. Intermediate matched asymptotic expansions

4.1. Inner diffusion and intermediate layers

At large distances from the rim, the first term in Eq. (8)
proportional to s becomes dominant. To balance this term
with the r.h.s. of the equation we have to choose b = 0 that
transforms Eq. (8) into

F 00 � zðzF 0 þ �F Þ ¼ 0; ð14Þ
where � = a/s may be regarded as a small parameter for
s� 1; and a is an unknown constant appearing also in
the boundary condition saF 0(0) = �1. Note that by ignor-
ing the small term we recover again the classical BPS prob-
lem having no bounded solution that implies the solution
to diverge as �? 0. The key to the solution is the appear-
ance of the small term in Eq. (14) as a factor at the coordi-
nate. Thus, however small is �, the corresponding product



220 J. Priede, G. Gerbeth / International Journal of Heat and Mass Transfer 50 (2007) 216–225
becomes �1 at z � 1/� which is an essential length scale of
the problem missed by the BPS approach.

The problem above can be solved by the method of
matched asymptotic expansions [11]. The solution, which
because of its length and complexity is presented in Appen-
dix A, yields the solute distribution along the solidification
front sufficiently far away from the rim

C1ðr; 0Þ ¼ c0 ln
R
r

� �
þ c1

� �
þO ln�1 R

r

� �� �
; ð15Þ

where the constants c0 and c1 are given by (31) and (35).
This solution plotted versus s = ln(R/r) in Fig. 3 is seen
to match the exact power series solution obtained in [10]
surprisingly well already at s > 1.

Alternatively, the above asymptotic solution can be
obtained by first solving Eq. (14) exactly as

F ðz; �Þ ¼ 31=3C 1þ �=3ð Þ
C 2=3ð Þ U

�

3
;
2

3
;
z3

3

� �
ð16Þ

and then taking the first two terms of the power-series
expansion in �. Note that (16) has the same asymptotics
as the intermediate solution considered above. Thus, (16)
presents a composite solution valid up to the first order
in � in both the inner diffusion layer and intermediate re-
gions. However, it will be shown later that the first two
terms of the asymptotic solution present an accurate solu-
tion of the original problem for a larger range of z than (16)
whose accuracy is limited to a certain neighborhood of the
solidification front. This is because Eq. (14), as shown pre-
viously, is accurate only up to the first order in �.

4.2. Inner core region

The comparison with a numerical solution of Eq. (6),
obtained by a Chebyshev collocation method with an alge-
braic mapping to a semi-infinite domain for z and a Crank–
Nicolson scheme for s [13], shows that (16) is accurate only
in the vicinity of the solidification front (see Fig. 4a). The
discrepancy between the asymptotic and the numerical
solutions at larger distances from the solidification front
is obviously due to the higher-order small term neglected
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Fig. 4. Numerically obtained axial concentration profiles at several radial pos
and the inner core (18) and outer diffusion layer (23) solutions (b) versus the
in Eq. (14). With this term taken into account Eq. (14)
reads as

z z
oF
oz
þ �F � �2 oF

o�

� �
¼ o2F

oz2
: ð17Þ

Note that for the intermediate solution F � z�� we have
oF
o�
� � lnðzÞF . Thus, the neglected term becomes compara-

ble to the retained one at � ln(z) � 1. This fact as well as
z�� � 1 � � ln(z) for � ln(z)� 1 suggests that the solution
at z� 1 and � ln(z)� 1 can be sought in terms of a new
coordinate g = � ln(dz), where d is a constant to be deter-
mined by matching with the intermediate solution. Hence-
forth we refer to this region as the inner core because here
the concentration distribution is dominated by convection
similarly to the outer core region. At the leading order in
�, Eq. (17) takes the form

� g� 1ð Þ dF c
0

dg
þ F c

0 ¼ 0:

Note that exponentially small terms have been neglected in
the above equation whose solution is

F c
0 gð Þ ¼ cc

0 1� gð Þ; ð18Þ
where cc

0 is a constant to be determined from matching with
the intermediate solution:

F mðzÞ ¼ c0 1� �c=3ð Þ 3�1=3z
� ��� þOð�2Þ

¼ c0 1� �ðc� ln 3Þ=3� � lnðzÞð Þ þOð�2Þ

yielding

d ¼ ec

3

� �1=3

ð19Þ

and cc
0 ¼ c0. Solution (18) is seen in Fig. 4b to be in good

agreement with the numerical one plotted against the re-
scaled coordinate s(g � 1) = ln(dze�s). Note that the inner
core solution matches the intermediate layer solution in the
same range as the latter matches the inner diffusion layer
because in both cases we use the condition � ln(z)� 1. In
this way, the inner core solution matches directly
with the inner diffusion layer solution and, thus, the
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intermediate solution is no longer necessary. Moreover,
according to Eq. (33) for z� 1 the asymptotics of the lead-
ing and first-order inner diffusion layer coincide with the
inner core solution. Thus the first two terms of the inner
diffusion layer solution present a composite solution valid
also in the inner core region.

4.3. Outer diffusion layer

The agreement with the numerical solution holds only
up to g � 1 because (18) becomes negative for g > 1. This
suggests that there has to be an additional transition region
between the inner and outer core regions where the adjust-
ment of concentration to its uniform value in the outer core
is ensured by diffusion. For the diffusion term to become
significant, the outer diffusion layer has to be thin enough.
To describe this layer we introduce a new stretched coordi-
nate e~g ¼ g� 1 ¼ � lnðdzÞ � 1, where e is a small parameter
regarded to be a function of �. Matching with the inner
core solution F c

0ðgÞ ¼ c0ð1� gÞ ¼ �c0e~g suggests that the
solution in the outer diffusion layer can be sought as
F ðz; sÞ ¼ eF oð~gÞ. Substitution of this ansatz into Eq. (17)
results in

1� �
e

de
d�

� �
�~g

dF o

d~g
þ F o

� �

¼ d3e�3ð1þe~gÞ=� �

e2

d2F o

d~g2
� e
�

dF o

d~g

� �
; ð20Þ

where the relation d~g
d�
¼ � ~g

e
de
d�

has been taken into account.
To balance the diffusion term on the r.h.s. of the above
equation with the advection term, the thickness of the tran-
sition layer has to satisfy

1� �
e

de
d�
¼ d3e�3=� �

e2
: ð21Þ

Searching for an asymptotic solution of the above equa-
tion as e(�) � e0(�) + e1(�) + � � � we obtain e0 = k� and
e1 ¼ � 1

3
�e�3=�d3=k, where k is an unknown constant. Since

e1 presents an exponentially small correction to e0, we have
e � k� for �� 1. Note that from the physical point of view
the outer diffusion layer is formed by two competing effects
due to convection. On one hand, the concentration profile
is advected by the tangential velocity along the streamline
and smoothed out by diffusion. On the other hand, the nor-
mal velocity component developing across the layer tries to
reduce its thickness. These counteracting effects, described
by Eq. (21), result in an equilibrium diffusion layer thick-
ness e = O(�) at which Eq. (20) in leading order takes the
form

�~g
dF o

0

d~g
þ F o

0 ¼ e�3k~g d2F o
0

d~g2
� k

dF o
0

d~g

� �
: ð22Þ

Eq. (22) contains an unknown constant k which may be re-
lated to the initial condition for e at the edge of the disk at
s = 0 corresponding to �?1. This can be done by consid-

ering the exact solution of Eq. (21) eð�Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 3

2
d3e�3=�

q
.

By requiring e to vanish at the edge of the disk s = 1/� = 0,
where the boundary layer starts to form, we obtain

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2d3=3

q
¼

ffiffiffiffiffiffiffi
2ec
p

=3 � 0:62912. Although there is no rig-
orous argument for such a choice of k, the corresponding
solution of Eq. (22) turns out to be very close to the numer-
ical solution (see Fig. 4b). Eq. (22) can be solved only
numerically. For this purpose we first redefine the coordi-
nate as ~z ¼ ek~g ¼ de�sz that transforms Eq. (22) into

k2 d2F o
0

d~z2
þ ~z ~z ln~z

dF o
0

d~z
� F o

0

� �
¼ 0: ð23Þ

Now, the above equation can easily be solved numerically
by a Chebyshev collocation method in the semi-infinite
interval for ~z by specifying F o

0 j~z¼0 ¼ co
0 and F o

0 j~z!1 ! 0.
In this case, k determines the extension of the solution be-
yond ~z � 1 while co

0 should in principle be determined by
matching with the outer solution at ~z 6 1. However, there
is no defined matching procedure because co

0 is specified by
the boundary condition at ~z ¼ 0 whereas Eq. (23) is valid
only in a certain neighborhood of ~z ¼ 1. Thus, on the
one hand, the numerical solution is determined up to an
arbitrary factor co

0, but on the other hand the particular
choice of co

0, provided that co
0 � 1, has a minor effect on

the extension of the solution at ~z > 1 which is determined
essentially by k. Thus the numerical solution allows us to
asses k without an exact matching with the outer solution.

5. Boundary layer at the symmetry axis

5.1. Inner axial layer

According to the solution obtained in the previous sec-
tion (Eq. (15)), the solute concentration along the solidifi-
cation front increases towards the symmetry axis as
�ln(r). Such a solution becomes singular at r = 0 and, thus,
it cannot predict the magnitude of the concentration per-
turbation at the symmetry axis. This singularity is due to
the neglected radial diffusion term in Eq. (3) which obvi-
ously becomes significant at r � 1. In order to obtain a
bounded solution at the symmetry axis we take into
account the radial diffusion term but, at first, neglect the
axial diffusion term by considering z� 1. Then the equa-
tion governing the concentration perturbation C1 defined
by (4) takes the form

z z
oC1

oz
� r

oC1

or

� �
¼ 1

r
o

or
r
oC1

or

� �
; ð24Þ

while the boundary condition at the axis reads as
oC1

or

��
r¼0
¼ 0. Note that the axial diffusion term was neglected

also for the inner core region considered in Section 4.2.
Thus, the solution of Eq. (24) is expected to match at
r ?1 with the radial inner core solution (18) which in
the original variables reads as Cc

1ðr; zÞ ¼ sF c
0ðgÞ ¼

�c0 lnðdrz=RÞ, where d is defined by (19). It is easy to see
that Cc

1ðr; zÞ satisfies Eq. (24) but not the boundary condi-
tion at the axis where it has a singularity. This suggests a
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Fig. 5. Dimensionless concentration perturbations C1 along the symmetry
axis resulting from the full numerical solution for disks of various
dimensionless radii R together with inner and outer axial asymptotic
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search for the solution at the symmetry axis as Cc
1ðr; zÞ ¼

Cc
1ðr; zÞ þ eC c

1ðr; zÞ, where eC c
1 is a correction satisfying Eq.

(24) and the boundary condition

oeC c
1

or
! � oCc

1

or
¼ c0

r
as r! 0: ð25Þ

We again look for a similarity solution in the formeC c
1ðr; zÞ ¼ zaGcðnÞ, where n = rzb. By substituting this solu-

tion into Eq. (24) and into the boundary condition (25) we
find, respectively, b ¼ 1

2
and a = 0. Then the corresponding

equation takes the form

1

n
d

dn
n

dGc

dn

� �
þ n

2

dGc

dn
¼ 0:

The solution of this equation satisfying (25) and vanishing
at r� 1 is GcðnÞ ¼ � 1

2
c0E1ðn2=4Þ, where E1(x) is the expo-

nential integral [12]. This solution shows that there is a
boundary layer around the symmetry axis with a character-
istic radial size that decreases as �z�1/2 with distance z

from the solidification front. Radial diffusion in this axial
boundary layer smoothes out the concentration peak
caused by the converging flow and so limits the magnitude
of the concentration perturbation at the symmetry axis.
With this correction the concentration distribution along
the symmetry axis is

Cc
1ð0; zÞ ¼

c0

2
ln

3dR2

4z

� �
: ð26Þ

Note that similarly to the radial inner core solution the
above solution along the axis becomes invalid at both small
and large distances from the solidification front. First, the
solution diverges at z ? 0 because of the neglected axial
diffusion term expected to become important at the solidi-
fication front. Second, the solution also diverges at large
distances, becoming negative for z > 3/4dR2.

5.2. Outer axial layer

At sufficiently large axial distances, the boundary layer
forming along the symmetry axis is expected to extend
from the inner core region into the outer one. Similarly
to the inner core, the concentration distribution in this
outer axial region is supposed to be governed by Eq.
(24). The difference to the inner core region is that now
the axial boundary layer is surrounded by the uniformly
mixed outer core implying C1jr?1? 0. The solution in
this outer axial layer is sought similarly to the inner one
as Co

1ðr; zÞ ¼ zaGoðnÞ, where n = rzb. This leads to b ¼ 1
2

and the equation

1

n
d

dn
n

dGo

dn

� �
þ n

2

dGo

dn
� aGo ¼ 0; ð27Þ

while the boundary condition at the symmetry axis takes
the form dGc

dn

���
n¼0
¼ 0. The remaining unknown constant a

is determined in this case from the solute conservation as
follows. The axial solute flux through a surface parallel
to the solidification front at sufficiently large axial distance
is

/ ¼ 2p
Z 1

0

rz2Co
1ðr; zÞdr ¼ 2pz1þa

Z 1

0

GcðnÞndn:

Solute conservation requires this flux to be a constant, i.e.,
invariant with respect to z, that results in a = �1. Then the
solution of Eq. (27) is

GoðnÞ ¼ Go
0 exp � n2

4

� �
;

where Go
0 is a constant related to the axial solute flux

/ ¼ 4pGo
0 that in turn is equal to the solute flux into the

melt from the solidification front which in the approxima-
tion of strong mixing is

/ ¼ �2p
Z R

0

oC1

oz

����
z¼0

r dr ¼ pR2:

In the original variables, we obtain Co
1ðr; zÞ ¼ R2=ð4zÞ

expð�r2z=4Þ. Matching with the inner core region, where
Cc

1ð0; zÞ ¼ Oð1Þ in terms of R� 1, implies that the transi-
tion from the inner to the outer solution takes place at
zc � R2 that defines the characteristic axial extension of
the inner core region. Note that this is also the point of
intersection of the axial boundary layer r � z�1/2 and the
outer edge of the inner core region z � R/r. Both the inner
and outer axial asymptotic solutions are confirmed by the
full numerical solution of the finite disk problem as shown
in Fig. 5.

5.3. Corner region

The axial inner core solution (26) diverges close to the
solidification front since the axial diffusion term neglected
in Eq. (24) becomes significant in the inner diffusion layer
at z � 1. This term taken into account leads back to the ori-
ginal governing equation (3). Now we can take the advan-
tage of the known asymptotic inner core solutions to solve
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for the concentration distribution only in the enclosed cor-
ner region at the symmetry axis rather than in the whole
domain above the disk. Thus, the leading and first order
radial asymptotic solutions obtained in Section 4.1 yield

C1ðr; zÞ ! s F i
0ðzÞ þ �F i

1ðzÞ
� �

¼ c0 ln
R
r

� �
þ F i

1ðzÞ; r!1

that in turn implies

r
oC1

or

����
r!1
¼ �c0:

Note that the latter boundary condition is preferred for the
following numerical solution because it does not involve
F i

1ðzÞ defined by the rather complicated expression (32).
Similarly, the axial inner core solution from Section 5.1
yields

C1ðr; zÞ ! c0 ln
R
drz

� �
� 1

2
E1

r2z
4

� �� �
; z!1

that also implies

z
oC1

oz

����
z!1
¼ �c0:

In addition, we have two original boundary conditions, one
at the solidification front oC1

oz

��
z¼0
¼ �1 and one at the sym-

metry axis oC1

or

��
r¼0
¼ 0. Note that the replacement of the

original Dirichlet boundary conditions by simpler Neu-
mann-type boundary conditions at the outer edge of the
inner core region results in the concentration defined up
to an additive constant. In order to have a correctly posed
problem for the numerical solution we impose an additional
condition by fixing the concentration in the corner point:
C1(0,0) = 0. In this case, the problem is too complicated
to be solved analytically and, thus, we resort to a numerical
solution using a Chebyshev collocation method [13] with an
additional algebraic coordinate mapping. The calculated
concentration distributions along both the solidification
-2.5
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-0.5

0

0.5

0 2 4 6 8 10
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1
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Fig. 6. Numerically calculated concentration distributions in the corner
region along both the solidification front and the symmetry axis together
with the corresponding asymptotics.
front and the symmetry axis are plotted in Fig. 6 together
with the corresponding asymptotic solutions

C1ðr; 0Þ ¼ cr � c0 lnðrÞ;

C1ð0; zÞ ¼ cz �
c0

2
lnðzÞ;

where cr � 0.3772 and cz � �0.7751 are determined from
the best fit of the numerical solution. Note that according
to the asymptotic solutions (15) and (26) cr � cz ¼ c0ðc1�
1
2

lnð3d=4ÞÞ ¼ 1:1528, where c0, c1 and d are defined by
Eqs. (31), (35) and (19), respectively, that agrees well with
the numerical solution. Further, matching with (15) yields
C1(0, 0) = c0(ln(R) + c1) � cr.

6. Discussion

The obtained solution reveals a complex internal struc-
ture of the solute boundary layer consisting of several char-
acteristic regions and sublayers which are shown
schematically in Fig. 7. The boundary layer develops from
the rim region of the disk having a width of the same order
of magnitude as the characteristic solute boundary layer
thickness d0 defined by Eq. (2) which represents an internal
length for the boundary layer under consideration. The rim
region is succeeded towards the axis by an inner diffusion
layer (c) located adjacent to the solidification front and
having the characteristic thickness �d0. The inner diffusion
layer is connected to the inner core region (d), where the
solute transport is dominated by convection similarly to
the bulk of the melt referred to as the outer core region
(a). The inner core region is bounded from the side of the
outer one by the streamline defined as r = dd0R0/z, where
d is the dimensionless constant given by Eq. (19). The inner
core region has a characteristic axial solute segregation
that decreases logarithmically with distance from the
~d0 ~R0 ~d0 R0

~d0

~R0
2/d0

~d0(d0/z)1/2

~d0/ln(R0/r))

r0

(b)(c)(h)

(d)

(e)

(f)

(g)

(a)

Fig. 7. Principal structure of the solute boundary layer in a converging
flow over a solidification front of finite radius R0 showing various
subregions and their characteristic sizes: (a) outer core, (b) rim, (c) inner
diffusion layer, (d) inner core; (e) outer diffusion layer; (f) inner axial layer;
(g) outer axial layer; (h) corner region. The internal length scale given by
the characteristic solute boundary layer thickness d0 is defined by Eq. (2).
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solidification front. The outer edge of the inner core is
defined by the position where the logarithmically decreas-
ing concentration perturbation becomes formally negative.
At this point, the outer diffusion layer (e) forms by separat-
ing the inner and outer core regions. The characteristic
thickness of this sublayer decreases towards the symmetry
axis as �d0(1/ln(R0/r)). Diffusion becomes significant in
this thin transition layer and ensures that the concentration
of the inner core smoothly matches with the outer one
without becoming negative as it would follow from the
inner core solution alone. The boundary layer changes in
the vicinity of the symmetry axis where the radial diffusion
becomes significant by smoothing out the logarithmically
growing solute concentration. Three characteristic subre-
gions can be distinguished along the symmetry axis. First,
there is an axial layer consisting of inner (f) and outer (g)
parts which have a characteristic radial size decreasing as
�d0(d0/z)1/2 with distance z from the solidification front.
The inner part of this layer with axial extension � R2

0=d0

bounds radially with the inner core region and has a loga-
rithmic axial solute distribution similar to that in the inner
core region. The outer part of the axial layer extends from
the inner core region into the outer one where the axial seg-
regation starts to decrease along the symmetry axis inver-
sely with the axial distance: �R0/z. At the solidification
front, the axial layer is bounded by the corner region (h),
which is the third axial subregion with characteristic radial
and axial sizes �d0. In this region, both the radial and
the axial diffusion becomes important. Thus, on one hand,
the non-uniformity of the solute concentration increasing
logarithmically along the radius attains a maximum
�ln(R0/d0) in the corner region at the symmetry axis. On
the other hand, according to Eq. (4) the characteristic mag-
nitude of the concentration non-uniformity reduces with
increase of stirring and, respectively, with reduction of d0

as �(1 � k)v0d0/D. Consequently, both these effects taken
into account result in a reduction of the concentration
maximum at the symmetry axis as �d0ln(R0/d0) with
increasing stirring and, respectively, reducing d0.
7. Conclusions

We have studied in detail the concentration distribution
resulting from a strong converging melt flow over a solidi-
fication front modeled by a disk of finite radius R0. The
velocity distribution was considered to be similar to that
in the flow rotating over a disk at rest with the axial veloc-
ity component depending only on the axial coordinate and
the radial velocity component depending linearly on the
distance from the symmetry axis. This allowed us to obtain
similarity and matched asymptotic expansion solutions
showing that the radial solute concentration depends on
the cylindrical radius r as �ln1/3(R0/r) and �ln(R0/r)
close to the rim of the disk and at distances from it consid-
erably larger than the solute boundary layer thickness,
respectively.
The main conclusion is that flows converging along a
solidification front, conversely to diverging ones, can cause
a strong radial solute segregation with a logarithmic con-
centration peak at the symmetry axis. In converging flows,
the solute concentration at the solidification front depends
not only on the local velocity distribution, as it is the case
in diverging flows, but also on the ratio of internal d0 and
external R0 length scales which appears as a logarithmic
correction factor to the result of a conventional order-of-
magnitude estimate.
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Appendix A. Solution for the inner diffusion and

intermediate layers

To solve Eq. (14) we introduce an intermediate axial
coordinate f = �z and search for the solution as asymptotic
series

F ði;mÞðz; �Þ �
X
j¼0

�jF ði;mÞj ðzÞ ð28Þ

for internal and intermediate regions denoted by indices i
and m where z � 1 and z� 1, respectively. A bounded
leading-order inner solution governed by

d2F i
0

dz2
� z2 dF i

0

dz
¼ 0;

dF i
0

dz

����
z¼0

¼ 0

is simply a constant F i
0ðzÞ ¼ ci

0. The corresponding inter-
mediate solution governed by

f
dF m

0

df
þ �F m

0 ¼ 0

is F m
0 ðfÞ ¼ cm

0 f��. For matching of both solutions an auxil-
iary intermediate coordinate ~f ¼ jz with �� j� 1 is
introduced that allows us to write

F m
0 ð~fÞ ¼ ~cm

0 e�� ln ~f � ~cm
0 ¼ cm

0

�

j

	 
�
resulting in ~cm

0 ¼ ci
0 ¼ c0. Then we obtain F m

0 ðzÞ ¼ c0z��

where c0 is an unknown constant to be determined by the
next-order inner solution governed by

d2F i
1

dz2
� z2 dF i

1

dz
¼ zc0; sa�

dF i
1

dz

����
z¼0

¼ �1: ð29Þ

To eliminate � from the boundary condition (29) we require
sa� = asa�1 � 1 that yields a = 1. Upon representing Eq.
(29) in a selfadjoint form

ez3=3 d

dz
e�z3=3 dF i

1

dz

� �
¼ c0z;

we find
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dF i
1

dz
¼ �c0ez3=3

Z 1

z
te�t3=3 dt

¼ �c03�1=3ez3=3C
2

3
;
z3

3

� �
; ð30Þ

where C(a,x) is the incomplete gamma function [12]. The
boundary condition in (29) leads to

c0 ¼
31=3

C 2=3ð Þ � 1:0651: ð31Þ

After some algebra one more integration of Eq. (30) yields

F i
1ðzÞ ¼ ci

1 þ
c0

3

o

oa
U a;

2

3
;
z3

3

� �����
a¼0

; ð32Þ

where a is a formal parameter. The first-order intermediate
solution is found similarly to the leading order one:
F m

1 ðfÞ ¼ cm
1 f��. Now, taking into account that at the inter-

mediate coordinate z� 1 and � lnz� 1

F i
1ðzÞ � ci

1 � c0 ln
z

31=3

� �
ð33Þ

and F m
1 ð~zÞ ¼ ~cm

1 e�� ln~z � ~cm
1 ¼ cm

1
�
d

� ��
, while F m

0 ðzÞ ¼ c0z�� �
c0ð1� � ln zÞ we obtain ~cm

1 ¼ ci
1 þ c0 ln 31=3. To determine

the constant ci
1 we have to consider the second-order inner

solution. Note that �, in our case, is not a constant but a
function of s that is ignored by the ansatz (7). This fact
taken into account results in an extra term in Eq. (14):
�z d�

ds
oF
o�

(see Eq. (17)). Further, taking into account
d�
ds ¼ ��2=a and the asymptotic expansion (28) it is easy to
see that Eq. (14) is accurate only up the first order in �.
On the other hand, when both second order terms are
taken into account, we find that they cancel mutually
because of �2 þ d�

ds ¼ 0 provided that a = 1. Therefore, to
obtain a non-zero next-order solution it is necessary to
admit a ¼

P
j¼0aj�

j where a0 = 1. Then the next-order cor-

rection is ��3 and the corresponding equation takes the

form

d2F i
3

dz2
� z2 dF i

3

dz
¼ a1zF i

1ðzÞ;
dF i

3

dz

����
z¼0

¼ 0; ð34Þ

which can be solved similarly to the first-order one as

F i
3ðzÞ ¼ ci

3 þ a1

c1

3

o

oa
U a;

2

3
;
z3

3

� �����
a¼0

�

þ c0

9

o2

oa2
U a;

2

3
;
z3

3

� �����
a¼0

�
:

The boundary condition in (34) yields ci
1 ¼ c0wð1Þ=3 ¼

�c0c=3, where w(x) is the Psi (Digamma) function and c
the Euler constant [12]. Eventually, we find
F i
1ð0Þ ¼ ci

1 þ
c0

3

o

oa
U a;

2

3
; 0

� �����
a¼0

¼ c0c1;
where
c1 ¼
1

3
wð1Þ � w

1

3

� �� �
¼ ln

ffiffiffi
3
p
þ p

6
ffiffiffi
3
p � 0:8516: ð35Þ
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